Módulo 04 Aritmética de Punto Fijo (Pt. 2)



Organización de Computadoras Depto. Cs. e Ing. de la Comp. Universidad Nacional del Sur

Copyright

- Copyright © 2011-2024 A. G. Stankevicius
- Se asegura la libertad para copiar, distribuir y modificar este documento de acuerdo a los términos de la GNU Free Documentation License, Versión 1.2 o cualquiera posterior publicada por la Free Software Foundation, sin secciones invariantes ni textos de cubierta delantera o trasera
- Una copia de esta licencia está siempre disponible en la página http://www.gnu.org/copyleft/fdl.html
- La versión transparente de este documento puede ser obtenida de la siguiente dirección:

http://cs.uns.edu.ar/~ags/teaching

Contenidos

- Clasificación de las operaciones
- Codificación decimal en binario (BCD)
- Representación SM
- Representación RC
- Representación DRC
- Operaciones de suma y de resta
- Detección de overflow
- Otras codificaciones

Suma en SM

- Para sumar dos números codificados en SM se aplica el siguiente algoritmo:
 - Sean $X = (X_{n-1} ... X_1 X_0)$ e $Y = (Y_{n-1} ... Y_1 Y_0)$ los números a ser sumados
 - Si $X_{n-1} = Y_{n-1}$ (números de igual signo), se suman las magnitudes $(X_{n-2} ... X_1 X_0)$ e $(Y_{n-2} ... Y_1 Y_0)$
 - En este caso el signo del resultado será X_{n-1}
 - Si hay acarreo en la posición del signo, entonces el resultado es inválido pues se produjo un overflow

Suma en SM

Continúa:

- En cambio, si X_{n-1} ≠ Y_{n-1} se deben comparar las magnitudes y en caso que |X| < |Y|, se procede a intercambiar los valores X e Y
- Independientemente de que se haya intercambiado o no, el resultado buscado se obtiene restando la magnitud (Y_{n-2} ... Y₁Y₀) a (X_{n-2} ... X₁X₀)
- En este caso el signo del resultado también será X_{n-1} (nótese que será el signo correcto, es decir, el signo del número más grande en valor absoluto)

- Asumida una base r = 2 y una precisión n = 8, se desean realizar las siguientes sumas entre números codificados en SM:
 - Con operandos de un mismo signo:

$$(0 \ \ ^{0}0011001)_{2} = +(25)_{10} + (0 \ \ 0111110)_{2} = +(62)_{10}$$

 $(0 \ \ 1010111)_{2} = +(87)_{10}$

Con operandos de distintos signo:

Detección de overflow

- Al operar en signo-magnitud sólo se puede producir overflow al sumar números de igual signo
 - → El mecanismo de detección del overflow consiste en inspeccionar el acarreo a la posición del signo: si hubo acarreo, se debe descartar el resultado por inválido
 - En contraste, no es posible provocar un overflow al sumar números de distinto signo
 - En ese caso el resultado siempre será más pequeño en valor absoluto que el mayor de los operandos, el cual ya era representable en esa precisión

- Asumida una base r = 2 y una precisión n = 8, se desean realizar las siguientes operaciones entre números codificados en SM:
 - Con operandos positivos:

$$(0 \ ^{1}1010111)_{2} = +(87)_{10} + (0 \ 0111110)_{2} = +(62)_{10}$$

 $(0 \ 0010101)_{2} = 0V$

Con operandos negativos:

$$(1 \ ^{1}0010100)_{2} = -(20)_{10} + (1 \ 11111110)_{2} = -(126)_{10}$$
 $(1 \ 0010010)_{2} = 0V$

Suma en DRC

- Para sumar dos números en complemento a la base disminuida se usa el siguiente algoritmo:
 - Sean X e Y los números a ser sumados y sean $S = (S_{n-1} ... S_1 S_0)$ los dígitos del resultado y $C = (C_n C_{n-1} ... C_1)$ los acarreos que se generen
 - La suma preliminar se obtiene sumando la totalidad de los dígitos, signo incluido
 - Si $X_{n-1} = Y_{n-1} = 0$ (ambos operandos positivos), C_n es necesariamente 0, y el resultado preliminar es el definitivo, pero si $S_{n-1} = 1$, se produjo overflow

Suma en DRC

Continúa:

- Si $X_{n-1} \neq Y_{n-1}$ (operandos de distinto signo), se estudia el acarreo de salida (C_n)
- Si $C_n = 0$, el resultado preliminar es el definitivo
- Si C_n = 1, se descarta el acarreo e incrementando en 1 al resultado preliminar se obtiene el definitivo
- Finalmente, si X_{n-1} = Y_{n-1} = 1 (ambos operandos negativos), C_n es necesariamente 1, y el resultado definitivo se obtiene incrementando en 1 al resultado preliminar, pero si S_{n-1} = 0, se produjo overflow

- Asumida una base r = 2 y una precisión n = 8, se desean realizar las siguientes operaciones entre números codificados en DRC:
 - Con operandos positivos:

$$(^{0}00101001)_{2} = +(41)_{10} + (00100110)_{2} = +(38)_{10}$$

 $(01001111)_{2} = +(79)_{10}$

Como era de esperar, $C_n = 0$. Por otra parte, como $S_{n-1} = 0$, el resultado preliminar es el definitivo:

$$(01001111)_2 = +(79)_{10}$$

Continúa:

Con operandos de distinto signo:

$$(^{1}11010110)_{2} = -(41)_{10} + (01100010)_{2} = +(98)_{10} + (56)_{10}$$

En esta oportunidad, C_n = 1. Se descarta el acarreo de salida, pero se debe incrementar en 1 el resultado preliminar para obtener el definitivo:

$$(00111001)_2 = +(57)_{10}$$

Detección de overflow

- Al operar en complemento a la base disminuida sólo se puede producir overflow al sumar números de igual signo
 - → El mecanismo de detección del overflow consiste en inspeccionar el bit de signo del resultado: en caso de no ser el esperado, se produjo un overflow
 - → Esta detección equivale a computar $C_n \oplus C_{n-1}$. Verificar que está expresión cubre todos los casos
 - Al igual que en las restantes representaciones, no es posible provocar un overflow al sumar números de distinto signo

- Asumida una base r = 2 y una precisión n = 8, se desea realizar la siguiente operación entre números codificados en DRC:
 - Con operandos negativos:

$$(^{1}10110111)_{2} = -(72)_{10} + (11000000)_{2} = -(63)_{10}$$

 $(01110111)_{2} = 0V$

- Como era de esperar, $C_n = 1$. No obstante, como el signo del resultado es incorrecto, se produjo overflow
- → Nótese que $C_n \oplus C_{n-1} = 1$, pues $C_n = 1$ y $C_{n-1} = 0$

Suma en RC

- Para sumar dos números en complemento a la base se usa el siguiente algoritmo:
 - Sean X e Y los números a ser sumados, sean $S = (S_{n-1} ... S_1 S_0)$ los dígitos del resultado y $C = (C_n C_{n-1} ... C_1)$ los acarreos que se generen
 - → La suma definitiva se obtiene sumando la totalidad de los dígitos, signo incluido
 - Si $X_{n-1} = Y_{n-1} = 0$ (ambos operandos positivos), C_n es necesariamente 0, pero si $S_{n-1} = 1$ (el signo del resultado es incorrecto), se produjo overflow

Suma en RC

Continúa:

- Si $X_{n-1} \neq Y_{n-1}$ (operandos de distinto signo), en caso de generarse acarreo de salida, se descarta
- → Finalmente, si $X_{n-1} = Y_{n-1} = 1$ (ambos operandos negativos), C_n es necesariamente 1, este acarreo también se descarta, pero si $S_{n-1} = 0$ (el signo del resultado es incorrecto), se produjo overflow

- Asumida una base r = 2 y una precisión n = 8, se desean realizar las siguientes sumas entre números codificados en RC:
 - Con operandos positivos:

$$({}^{0}00010110)_{2} = +(22)_{10} + (00010010)_{2} = +(18)_{10}$$

 $(00101000)_{2} = +(40)_{10}$

Como era de esperar, $C_n = 0$. A su vez, considerando que $S_{n-1} = 0$, el resultado es el correcto pues no se produjo overflow

Continúa:

Con operandos de distinto signo:

```
(^{1}11010111)_{2} = -(41)_{10} + (01100010)_{2} = +(98)_{10} + (57)_{10}
```

◆ En esta oportunidad, C_n = 1. Se descarta el acarreo de salida y como no se puede producir overflow con operandos de distinto signo el resultado obtenido es necesariamente correcto

Detección de overflow

- Al operar en complemento a la base sólo se puede producir overflow al sumar números de igual signo
 - El mecanismo de detección del overflow es análogo al anterior: se inspecciona el bit de signo del resultado y si no es el esperado es porque se produjo overflow
 - → Esta detección equivale a computar C_n ⊕ C_{n-1}
 - Recordemos que al igual que en las restantes representaciones, no es posible provocar overflow al sumar números de distinto signo

- Asumida una base r = 2 y una precisión n = 8, se desea realizar la siguiente operación entre números codificados en RC:
 - Con operandos negativos:

$$(^{1}10000000)_{2} = -(128)_{10} + (111111111)_{2} = -(110000000)_{10}$$

 $(0111111111)_{2} = 0$

- → Como era de esperar, $C_n = 1$. No obstante, el signo del resultado es incorrecto, se produjo overflow
- → Nótese que $C_n \oplus C_{n-1} = 1$, pues $C_n = 1$ y $C_{n-1} = 0$

Análisis

- Para completar el análisis comparativo de las tres representaciones alternativas nos resta estudiar la eficiencia de sus implementaciones:
 - Para SM, debe considerarse que para implementar una suma se debe llevar adelante una comparación de magnitudes; esta comparación se implementa a nivel de hardware analizando el signo de la diferencia entre las magnitudes
 - → Es decir, toda vez que se opere en **SM** a veces se suma y otras veces se resta dos veces (lo que implica que hay que disponer de ambos circuitos en el hardware)

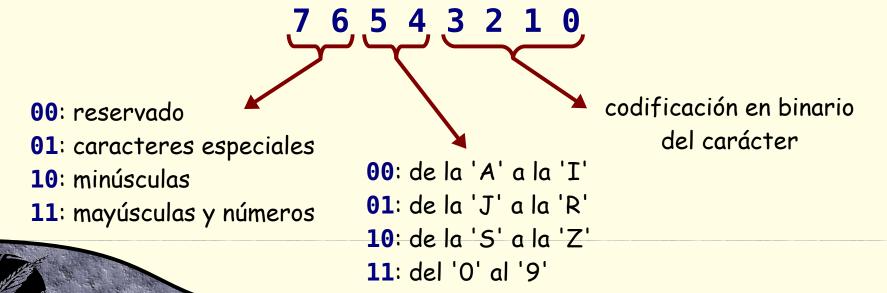
Análisis

Continúa:

- Para DRC sucede algo análogo: en el peor caso (esto es, cuando se produce acarreo de salida), para sumar dos magnitudes se debe realizar también dos operaciones sucesivas de suma
- RC se destaca por ser la representación más eficiente, para realizar una suma simplemente se lleva adelante la suma propiamente dicha
- Finalmente, en todos los casos se puede implementar la operación de resta usando el hardware asignado a la suma al combinarlo con la complementación

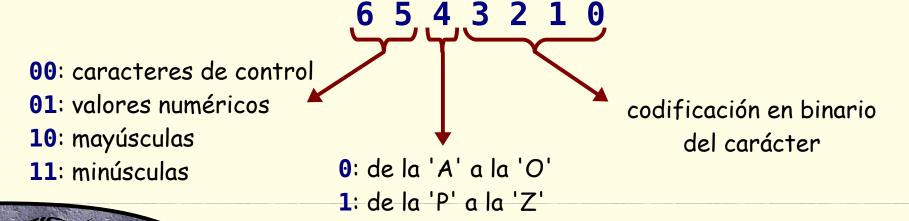
Codificación EBCDIC

- El código EBCDIC es una extensión del código BCD diseñado por IBM en la década del '60
 - Codifica directamente caracteres de texto, usando 8 bits por cada carácter
 - Los bits se organizan de la siguiente manera:



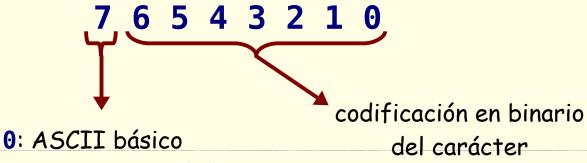
Codificación ASCII

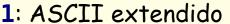
- El código ASCII es un estándar también creado en los 60' específicamente para los americanos
 - Codifica cada carácter usando 7 bits, lo que permite 128 combinaciones (razón por la cual no contempla, entre otros, vocales acentuadas ni la letra eñe)
 - Los bits se organizan de la siguiente manera:



Codificación ASCII extendido

- El código ASCII extendido es una extensión del código ASCII original
 - Con el objeto de codificar algunos de los caracteres faltantes se incorpora un bit más por carácter
 - Existen múltiples extensiones (desde ISO 8859-1 a 8859-15), una para cada región o zona del planeta
 - Se organiza de la siguiente manera:





Codificación UNICODE

El código UNICODE fue propuesto para unificar las codificaciones incompatibles existentes al momento de su concepción

- Al tratarse de un estándar reciente, el comité que lo diseño tuvo la chance de corregir los inconvenientes identificados en los restantes códigos
- Actualmente cubre 149.813 caracteres
- Usa un esquema de codificación extensible, por lo que se puede seguir agregando nuevos caracteres
- La última versión (15.1) es de septiembre del 2023

UTF-8

- La codificación UTF-8 es una de las maneras que existe codificar el código UNICODE
 - La codificación se compone de una cantidad variable de bloques de 8 bits
 - Como objetivo de diseño se desea maximizar la compatibilidad con el código ASCII
 - Por esta razón, las primeras 128 codificaciones coinciden con el mapeo del código ASCII
 - De ahí en adelante entra en acción el esquema extensible, agregando nuevos bloques de 8 bits a medida que vayan siendo requeridos

UTF-16 y UTF-32

- Las codificaciones UTF-16 y UTF-32 aparecen como alternativas a la codificación UTF-8
 - UTF-16 sólo codifica una porción del código UNICODE (isolamente 1.112.064 caracteres!)
 - → Hace uso de una cantidad variable de bloques de 16 bits
 - UTF-32 codifica el mismo subconjunto que UTF-16
 - → La principal diferencia es que hace uso de exactamente un único bloque de 32 bits.

¿Preguntas?